metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[dichloridocobalt(II)]-μ-4,4'bis(benzimidazol-1-yl)biphenyl]

Hui Li,* Qiuping Han, Chenzhong Yao, Qiaojuan Gong and Zhuangwei Wei

Department of Applied Chemistry, Yuncheng University, Yuncheng, Shanxi 044000, People's Republic of China Correspondence e-mail: lihuiwff@163.com

Received 19 March 2011; accepted 22 March 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.053; wR factor = 0.124; data-to-parameter ratio = 18.0.

In the title compound, $[\text{CoCl}_2(\text{C}_{26}\text{H}_{18}\text{N}_4)]_n$, the Co^{II} atom (site symmetry 2) is tetrahedrally coordinated by two chloride ions and two N atoms from 4,4'-bis(benzimidazol-1-yl)biphenyl ligands: the complete ligand is generated by crystallographic twofold symmetry. The dihedral angle between the benzene rings is 34.67 (8)° and the angle between the bennee ring and the adjacent benzimidazole ring system is 43.26 (10)°. The bridging ligand links the Co^{II} atoms into chains propagating in [101].

Related literature

For background to benzimidazole-based ligands in crystal engineering, see: Jin *et al.* (2006); Li *et al.* (2009); Su *et al.* (2003).

Experimental

Crystal data [CoCl₂(C₂₆H₁₈N₄)]

 $M_r=516.27$

Monoclinic, $C2/c$ a = 12.878 (3) Å b = 15.181 (3) Å c = 11.136 (2) Å $\beta = 91.37$ (3)° V = 2176.5 (8) Å ³	Z = 4 Mo K α radiation $\mu = 1.06 \text{ mm}^{-1}$ T = 293 K $0.25 \times 0.20 \times 0.15 \text{ mm}$
Data collection	
Rigaku Mercury CCD diffractometer Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku/MSC, 2005) $T_{\rm min} = 0.776, T_{\rm max} = 0.853$	13945 measured reflections 2696 independent reflections 2361 reflections with $I > 2\sigma(I)$ $R_{int} = 0.053$
Refinement $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.124$	150 parameters H-atom parameters constrained
S = 1.12 2696 reflections	$\Delta \rho_{\text{max}} = 0.48 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.71 \text{ e } \text{\AA}^{-3}$

Table 1 Selected bond lengths (Å).

	0			
Co1-N1		2.022 (2)	Co1-Cl1	2.2491 (8)

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We thank the College Research Program of Yuncheng University (2008114) for funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5820).

References

- Jin, C. M., Lu, H., Wu, L. Y. & Huang, J. (2006). Chem. Commun. pp. 5039– 5041.
- Li, Z. X., Xu, Y., Zuo, Y., Li, L., Pan, Q., Hu, T. L. & Bu, X. H. (2009). Cryst. Growth Des. 9, 3904–3909.
- Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Su, C. Y., Cai, Y. P., Chen, C. L., Smith, M. D., Kaim, W. & zur Loye, H. C. (2003). J. Am. Chem. Soc. 125, 8595–8613.

supplementary materials

Acta Cryst. (2011). E67, m492 [doi:10.1107/S1600536811010671]

catena-Poly[[dichloridocobalt(II)]-//-4,4'-bis(benzimidazol-1-yl)biphenyl]

H. Li, Q. Han, C. Yao, Q. Gong and Z. Wei

Comment

Benzimidazole has been well used in crystal engineering, and a large number of benzimidazole-containing flexible ligands have been extensively studied (Su *et al.*,2003; Jin *et al.*,2006). However, to our knowledge, the research on benzimidazole ligands bearing rigid spacers is still less developed (Li *et al.*,2009).

Single-crystal X-ray diffraction analysis reveals that the title compound (I) crystallizes in the monoclinic space group C2/c. The geometry of the Co^{II} ion is surrounded by two benzoiimidazole rings of distinct L ligands and two chlorine anions, which illustrates a slightly distorted tetrahedral coordination environment (Fig. 1). Notably, as shown in Fig. 2, the four-coordinated Co^{II} center is bridged by the linear ligand L to form an infinite one-dimensional architecture. The dihedral angle between the biphenyl rings is 34.67 (8)°.

Experimental

A mixture of CH₃OH and CHCl₃ (1:1, 8 ml), as a buffer layer, was carefully layered over a solution of 4,4'-Bis(benzimidazol-1-yl)terphenyl (L, 0.06 mmol) in CHCl₃ (6 ml). Then a solution of CoCl₂ (0.06 mmol) in CH₃OH (6 ml) was layered over the buffer layer, and the resultant reaction was left to stand at room temperature. After *ca* three weeks, blue block single crystals appeared at the boundary. Yield: ~40% (based on L).

Refinement

C-bound H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.93Å and $U_{iso}(H) = 1.2$ Ueq.

Figures

Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius. Atoms with suffix A are generated by (-x, y, 3/2-z).

Fig. 2. The crystal packing for (I).

catena-Poly[[dichloridocobalt(II)]-µ-4,4'-bis(benzimidazol- 1-yl)biphenyl]

F(000) = 1052

 $\theta = 2.1 - 28.3^{\circ}$

 $\mu = 1.06 \text{ mm}^{-1}$

T = 293 K

Block, blue

 $0.25\times0.20\times0.15~mm$

 $D_{\rm x} = 1.576 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3011 reflections

Crystal data

 $[CoCl_2(C_{26}H_{18}N_4)]$ $M_r = 516.27$ Monoclinic, C2/c Hall symbol: -C 2yc a = 12.878 (3) Å b = 15.181 (3) Å c = 11.136 (2) Å $\beta = 91.37$ (3)° V = 2176.5 (8) Å³ Z = 4

Data collection

Rigaku Mercury CCD diffractometer	2696 independent reflections
Radiation source: fine-focus sealed tube	2361 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.053$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
ω scans	$h = -17 \rightarrow 17$
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)	$k = -20 \rightarrow 20$
$T_{\min} = 0.776, \ T_{\max} = 0.853$	$l = -14 \rightarrow 14$
13945 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.124$	H-atom parameters constrained
<i>S</i> = 1.12	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0551P)^{2} + 4.8457P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2696 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
150 parameters	$\Delta \rho_{max} = 0.48 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.71 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Col	0.0000	0.40291 (3)	0.7500	0.01602 (16)
Cl1	0.03587 (6)	0.32578 (5)	0.91836 (7)	0.0311 (2)
N2	0.24698 (16)	0.52363 (14)	0.58018 (19)	0.0139 (4)
N1	0.11781 (16)	0.48022 (14)	0.69588 (19)	0.0151 (4)
C8	0.31898 (18)	0.52081 (17)	0.4838 (2)	0.0134 (5)
C11	0.46103 (18)	0.51614 (17)	0.2986 (2)	0.0140 (5)
C3	0.1150 (2)	0.61615 (17)	0.8273 (2)	0.0162 (5)
H3	0.0601	0.5985	0.8743	0.019*
C12	0.4046 (2)	0.59193 (17)	0.3225 (2)	0.0169 (5)
H12	0.4150	0.6419	0.2761	0.020*
C7	0.23231 (19)	0.59156 (16)	0.6623 (2)	0.0139 (5)
C13	0.3332 (2)	0.59502 (17)	0.4139 (2)	0.0172 (5)
H13	0.2955	0.6461	0.4278	0.021*
C1	0.17714 (19)	0.45999 (17)	0.6047 (2)	0.0153 (5)
H1	0.1715	0.4075	0.5620	0.018*
C10	0.44322 (18)	0.44110 (17)	0.3680 (2)	0.0145 (5)
H10	0.4781	0.3890	0.3514	0.017*
C9	0.37368 (19)	0.44371 (17)	0.4617 (2)	0.0151 (5)
Н9	0.3638	0.3942	0.5093	0.018*
C2	0.15099 (19)	0.56315 (17)	0.7347 (2)	0.0138 (5)
C6	0.2823 (2)	0.67174 (17)	0.6813 (2)	0.0173 (5)
Н6	0.3365	0.6901	0.6336	0.021*
C4	0.1643 (2)	0.69603 (18)	0.8462 (2)	0.0193 (5)
H4	0.1423	0.7328	0.9073	0.023*
C5	0.2473 (2)	0.72257 (17)	0.7745 (2)	0.0185 (5)
H5	0.2795	0.7762	0.7905	0.022*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic	displ	'acement	parameters	$(Å^2)$)
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		p		

	$U^{11}$	$U^{22}$	$U^{33}$	$U^{12}$	$U^{13}$	$U^{23}$
Col	0.0152 (3)	0.0153 (3)	0.0178 (3)	0.000	0.00656 (19)	0.000
Cl1	0.0347 (4)	0.0324 (4)	0.0267 (4)	0.0187 (3)	0.0143 (3)	0.0116 (3)
N2	0.0139 (10)	0.0151 (10)	0.0127 (10)	-0.0009 (8)	0.0033 (8)	-0.0021 (8)
N1	0.0146 (10)	0.0170 (10)	0.0138 (10)	-0.0027 (8)	0.0039 (8)	-0.0005 (8)
C8	0.0113 (10)	0.0178 (12)	0.0111 (11)	-0.0016 (9)	0.0032 (9)	0.0000 (9)
C11	0.0112 (11)	0.0184 (12)	0.0126 (12)	-0.0020 (9)	0.0041 (9)	0.0012 (9)
C3	0.0151 (11)	0.0207 (13)	0.0130 (12)	0.0016 (9)	0.0029 (10)	0.0012 (10)

# supplementary materials

C12	0.0169 (12)	0.0189 (12)	0.0152 (12)	0.0011 (9)	0.0045 (10)	0.0044 (10)
C7	0.0121 (11)	0.0163 (12)	0.0135 (12)	0.0027 (9)	0.0018 (9)	-0.0005 (9)
C13	0.0180 (12)	0.0177 (12)	0.0161 (12)	0.0046 (10)	0.0063 (10)	0.0030 (10)
C1	0.0168 (12)	0.0170 (12)	0.0124 (12)	-0.0024 (9)	0.0036 (10)	-0.0005 (9)
C10	0.0117 (11)	0.0144 (11)	0.0175 (13)	-0.0001 (9)	0.0002 (9)	-0.0015 (10)
C9	0.0158 (11)	0.0151 (12)	0.0144 (12)	-0.0029 (9)	0.0022 (9)	0.0018 (9)
C2	0.0129 (11)	0.0169 (12)	0.0116 (12)	-0.0007 (9)	0.0017 (9)	0.0006 (9)
C6	0.0153 (12)	0.0162 (12)	0.0205 (13)	-0.0013 (9)	0.0023 (10)	0.0036 (10)
C4	0.0216 (13)	0.0185 (13)	0.0177 (13)	0.0036 (10)	0.0009 (10)	-0.0023 (10)
C5	0.0214 (12)	0.0129 (11)	0.0214 (14)	0.0015 (10)	0.0011 (11)	0.0018 (10)

### Geometric parameters (Å, °)

Co1—N1	2.022 (2)	С3—Н3	0.9300
Co1—N1 ⁱ	2.022 (2)	C12—C13	1.388 (4)
Col—Cll ⁱ	2.2491 (8)	C12—H12	0.9300
Co1—Cl1	2.2491 (8)	C7—C6	1.391 (3)
N2—C1	1.352 (3)	C7—C2	1.404 (3)
N2—C7	1.394 (3)	С13—Н13	0.9300
N2—C8	1.436 (3)	C1—H1	0.9300
N1—C1	1.321 (3)	С10—С9	1.392 (4)
N1—C2	1.395 (3)	C10—H10	0.9300
C8—C13	1.384 (3)	С9—Н9	0.9300
C8—C9	1.391 (3)	C6—C5	1.378 (4)
C11—C12	1.390 (4)	С6—Н6	0.9300
C11—C10	1.399 (3)	C4—C5	1.408 (4)
C11—C11 ⁱⁱ	1.494 (5)	C4—H4	0.9300
C3—C4	1.383 (4)	С5—Н5	0.9300
C3—C2	1.396 (4)		
N1—Co1—N1 ⁱ	109.02 (13)	N2—C7—C2	105.3 (2)
N1—Co1—Cl1 ⁱ	101.21 (7)	C8—C13—C12	118.9 (2)
N1 ⁱ —Co1—Cl1 ⁱ	114.22 (7)	C8—C13—H13	120.5
N1—Co1—Cl1	114.22 (7)	С12—С13—Н13	120.5
N1 ⁱ —Co1—Cl1	101.21 (7)	N1—C1—N2	112.9 (2)
Cll ⁱ —Co1—Cl1	117.25 (5)	N1—C1—H1	123.6
C1—N2—C7	107.1 (2)	N2-C1-H1	123.6
C1—N2—C8	125.1 (2)	C9—C10—C11	120.5 (2)
C7—N2—C8	127.8 (2)	C9—C10—H10	119.7
C1—N1—C2	105.6 (2)	C11—C10—H10	119.7
C1—N1—Co1	123.10 (18)	C8—C9—C10	119.6 (2)
C2—N1—Co1	131.16 (17)	С8—С9—Н9	120.2
С13—С8—С9	120.7 (2)	С10—С9—Н9	120.2
C13—C8—N2	119.5 (2)	N1—C2—C3	130.1 (2)
C9—C8—N2	119.7 (2)	N1—C2—C7	109.1 (2)
C12-C11-C10	118.4 (2)	C3—C2—C7	120.8 (2)
C12—C11—C11 ⁱⁱ	120.15 (16)	C5—C6—C7	116.5 (2)
C10-C11-C11 ⁱⁱ	121.49 (16)	С5—С6—Н6	121.8

C4—C3—C2	117.3 (2)	С7—С6—Н6	121.8		
С4—С3—Н3	121.3	C3—C4—C5	121.1 (2)		
С2—С3—Н3	121.3	C3—C4—H4	119.5		
C13—C12—C11	121.8 (2)	С5—С4—Н4	119.5		
C13—C12—H12	119.1	C6—C5—C4	122.2 (3)		
C11—C12—H12	119.1	С6—С5—Н5	118.9		
C6—C7—N2	132.6 (2)	С4—С5—Н5	118.9		
C6—C7—C2	122.0 (2)				
N1 ⁱ —Co1—N1—C1	-143.7 (2)	C8—N2—C1—N1	-177.9 (2)		
Cl1 ⁱ —Co1—N1—C1	-23.0 (2)	C12—C11—C10—C9	-2.5 (4)		
Cl1—Co1—N1—C1	104.0 (2)	C11 ⁱⁱ —C11—C10—C9	177.1 (3)		
N1 ⁱ —Co1—N1—C2	31.89 (19)	C13—C8—C9—C10	-0.2 (4)		
Cl1 ⁱ —Co1—N1—C2	152.6 (2)	N2-C8-C9-C10	179.8 (2)		
Cl1—Co1—N1—C2	-80.5 (2)	C11—C10—C9—C8	2.2 (4)		
C1—N2—C8—C13	135.7 (3)	C1—N1—C2—C3	179.4 (3)		
C7—N2—C8—C13	-41.8 (4)	Co1—N1—C2—C3	3.3 (4)		
C1—N2—C8—C9	-44.3 (4)	C1—N1—C2—C7	0.3 (3)		
C7—N2—C8—C9	138.2 (3)	Co1—N1—C2—C7	-175.87 (17)		
C10-C11-C12-C13	1.0 (4)	C4—C3—C2—N1	179.3 (2)		
C11 ⁱⁱ —C11—C12—C13	-178.6 (3)	C4—C3—C2—C7	-1.6 (4)		
C1—N2—C7—C6	178.6 (3)	C6—C7—C2—N1	-178.9 (2)		
C8—N2—C7—C6	-3.6 (4)	N2—C7—C2—N1	-0.3 (3)		
C1—N2—C7—C2	0.1 (3)	C6—C7—C2—C3	1.8 (4)		
C8—N2—C7—C2	178.0 (2)	N2-C7-C2-C3	-179.5 (2)		
C9—C8—C13—C12	-1.3 (4)	N2—C7—C6—C5	-178.7 (3)		
N2-C8-C13-C12	178.7 (2)	C2—C7—C6—C5	-0.5 (4)		
C11—C12—C13—C8	0.8 (4)	C2—C3—C4—C5	0.2 (4)		
C2—N1—C1—N2	-0.2 (3)	C7—C6—C5—C4	-0.9 (4)		
Co1—N1—C1—N2	176.35 (16)	C3—C4—C5—C6	1.1 (4)		
C7—N2—C1—N1	0.0 (3)				
Symmetry codes: (i) $-x$ , $y$ , $-z+3/2$ ; (ii) $-x+1$ , $y$ , $-z+1/2$ .					



Fig. 1

